橡膠電氣擊穿試驗儀橡膠電氣擊穿試驗儀
Xl. 絕緣強度測試的意義
X1.1 介紹
簡要回顧了擊穿的三種假定機制,分別是:(1)放電或電暈機制,(2)熱機制,以及(3)固有機制,討論了在原理上對實際電介質產生影響的因素,并對數據的解釋提供幫助。擊穿機制常常與其他機制相結合,而非單獨發揮效用。隨后的討論僅針對固體和半固體材料。介電擊穿的假定機制由放電造成的擊穿——在對工業材料進行的許多測試中,都是由于放電造成了擊穿,這通常造成較高的局部場。對于固體材料來說,放電常常發生在環境介質中,因此增加測試的區域將在電極邊緣上或外側產生擊穿。放電也會發生在內部出現或生成的一些泡沫或氣泡里。這會造成局部的侵蝕或化學分解。這些過程將一直持續到在電極間形成的失效通路為止。熱擊穿——在置于高強度電場時,在許多材料內的局部路徑上會積聚大量的熱,這將造成電介質和離子導電性能的損失,進而迅速產生熱量,所產生的熱量將大于所能耗散掉的熱量。由于材料的熱不穩定性,導致了擊穿的發生。
固有擊穿——如果放電或熱穩定性都不能造成擊穿,那么在電場強度大到足以加速電子穿過材料時,仍將發生擊穿。標準電場強度被稱為固有絕緣強度。雖然機制本身也許已經涉及,但本測試法仍不能測試固有絕緣強度。絕緣材料的性質固態工業絕緣材料通常是非均勻的,且含有許多不同的電介質缺陷。試樣上常常發生擊穿的區域,并不是那些電場強度大的區域,有時甚至是那些遠離電極的區域。在應力下卷中的薄弱環節有時將決定測試的結果。 測試和測試樣狀況的影響因素——通常,隨著電極區域的增加,擊穿電壓會降低,這種影響對于薄試樣來說更為明顯。電極的幾何形狀也會影響測試的結果。制作電極的材料也會對測試結果產生影響,這是因為電極材料的熱導性和功函會對熱機制和發電機制產生影響。通常來說,由于缺乏相關的實驗數據,所以很難確定電極材料的影響。試樣厚度——固體工業絕緣材料的絕緣強度主要取決于試樣的厚度。經驗顯示,對于固體和半固體材料來說,絕緣強度與以試樣厚度為分母的分數成反比,更多的證據顯示,對于相對均勻的固體來說,絕緣強度與厚度的平方根互為倒數。如果固體試樣能熔化后倒入到固定電極之間并凝固下來,那么電極間距的影響將很難得到明確的定義。因為在這種情況下,可以隨意固定電極間距,所以習慣在液體或可溶固體中進行絕緣強度測試,此時電極間具有標準的固定空間。因為絕緣強度取決于厚度,所以如果在報告絕緣強度數據時缺乏測試所用試樣的起始厚度,那么這樣的數據將毫無意義。
溫度——試樣和環境介質的溫度將影響絕緣強度,雖然對于大多數材料來說,微小的環境溫度變化對材料造成影響可以忽略不計。通常,絕緣強度隨溫度的升高而降低,但其強度的極限取決于被測材料。由于材料需要室溫以外的條件下發揮作用,所以有必要在比期望操作溫度更大的范圍里,對絕緣強度與溫度的關系進行確定。時間——電壓應用的速率也會影響測試結果。通常,擊穿電壓隨電壓應用速率的增加而提高。這是預料之中的,因為熱擊穿機制有賴于時間,而放電機制也有賴于時間,雖然在一些情況下,后一種機制通過產生局部電場高臨界強度造成快速失效波形——通常,應用電壓的波形也會影響絕緣強度。在本測試方法的限制說明中,波形的影響是不顯著的。頻率——對于本測試法,在工業用電頻率范圍內,頻率的變化對絕緣強度的影響將不是那么顯著。但是,不能從本測試法所得結果中推斷出其他非工業用電頻率(50到60HHz)對絕緣強度的影響。