廢氣處理設備,主要是指運用不同工藝技術,通過回收或去除、減少排放尾氣的有害成分,達到保護環境、凈化空氣的一種環保設備,讓我們的環境不受到污染。
皮革廢氣處理廠家
抗生素廢水的處理方法可歸納為以下幾種:物化處理方法、好氧生物處理方法、厭氧生物處理方法以及多種方法的組合處理等。物化法主要包括沉淀、混凝、過濾等方式。由于抗生素生產廢水成分復雜,有機物含量高,同時含有少量的殘留抗生素,在采用生化處理時,殘留抗生素對微生物的強烈作用造成廢水處理過程復雜、成本高和效果不穩定。好氧生物處理主要有SBR、氧化溝、深井曝氣及接觸氧化法等。由于抗生素廢水屬于高濃度有機廢水,常規好氧工藝活性污泥法難以承受COD濃度1g/L以上的廢水,需對元廢水進行大量稀釋,清水、動力消耗很大,導致處理成本很高,應用廠家實際廢水處理率也較低。
分類
吸收設備
吸收法采用低揮發或不揮發性溶劑對VOCs進行吸收,再利用VOCs和吸收劑物理性質的差異進行分離。
含VOCs的氣體自吸收塔底部進入塔內,在上升過程中與來自塔頂的吸收劑逆流接觸,凈化后的氣體由塔頂排出。吸收了VOCs的吸收劑通過熱交換器后,進入汽提塔頂部,在溫度高于吸收溫度或壓力低于吸收壓力的條件下解吸。解吸后的吸收劑經過溶劑冷凝器冷凝后回到吸收塔。解吸出的VOCs氣體經過冷凝器、氣液分離器后以較純的VOCs氣體離開汽提塔,被回收利用。該工藝適合于VOCs濃度較高、溫度較低的氣體凈化,其他情況下需要作相應的工藝調整。
吸附設備
溫度越高,反硝化速率越高,在3~35℃時,反硝化速率增至。當低于15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨于停止。反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的pH范圍為6.5~8.。水生物除磷總磷超標原因及對策3.1污泥負荷與污泥齡厭氧-好氧生物除磷工藝是一種高F/M低SRT系統。當F/M較高,SRT較低時,剩余污泥排放量也就較多。
皮革廢氣處理廠家
在用多孔性固體物質處理流體混合物時,流體中的某一組分或某些組分可被吸表面并濃集其上,此現象稱為吸附。吸附處理廢氣時,吸附的對象是氣態污染物,氣固吸附。被吸附的氣體組分稱為吸附質,多孔固體物質稱為吸附劑。
固體表面吸附了吸附質后,一部被吸附的吸附質可從吸附劑表面脫離,此現附。而當吸附進行一段時間后,由于表面吸附質的濃集,使其吸附能力明顯下降而吸附凈化的要求,此時需要采用一定的措施使吸附劑上已吸附的吸附質脫附,以協的吸附能力,這個過程稱為吸附劑的再生。因此在實際吸附工程中,正是利用吸附一再生一再吸附的循環過程,達到除去廢氣中污染物質并回收廢氣中有用組分。
凈化設備
燃燒法用于處理高濃度Voc與有惡臭的化合物很有效,其原理是用過量的空氣使這些雜質燃燒,大多數生成二氧化碳和水蒸氣,可以排放到大氣中。但當處理含氯和含硫的有機化合物時,燃燒生成產物中HCl或SO2,需要對燃燒后氣體進一步處理。
該組合技術通過沸石轉輪的吸附濃縮使大風量、低濃度有機廢氣濃縮為小風量、高濃度濃縮氣體,高濃度濃縮氣再經RTO高溫燃燒分解為CO2和H2O等無機成分。沸石轉輪濃縮裝置是利用吸附-脫附-濃縮三項連續變溫的吸附、脫附程序,通過轉輪的旋轉,在轉輪(被分割成吸附區、脫附區、冷卻區)上同時完成VOCs的吸附、脫附再生。組合技術工藝過程:經粉塵過濾裝置去除粉塵、顆粒物后的有機廢氣流過濃縮轉輪時,其中的有機物在轉輪吸附區域會被吸附下來,經過吸附凈化后的廢氣(約占處理風量的85%~95%)排放到大氣中,一小部分廢氣(約占處理風量的5%~15%)對轉輪冷卻區降溫后經換熱器被加熱到18~22℃的脫附溫度后,流入脫附區,脫附區有機物從吸附劑沸石上脫離到加熱的氣流中,轉輪得以再生,脫附后的高濃度VOCs被送入RTO高溫焚燒,反應后的高溫煙氣進入規整蜂窩陶瓷蓄熱體,95%的熱量被蓄熱體吸收并儲存起來,溫度降低到接近RTO入口溫度,通常不超過5℃。
全國垃圾分類工作正在如火如荼地進行。一般來說,分類后的部分垃圾會被運送到終端處理設施,焚燒后轉換成潔凈的電能。而在這個過程中所產生的有害物質、有體則需要經過一系列嚴格處理,以滿足國家排放標準要求,且垃圾焚燒發電后產生的殘余物則可用于提煉回收,剩余殘渣則可以通過技術手段制作成水泥添加物、鋪路基材和制磚基材。以廣州市第五資源熱力電廠為例,揭秘垃圾從發酵、燃燒、有害氣體處理到熱能轉化的全流程。廣州市第五資源熱力電廠,日處理垃圾能力達225噸,年發電量3.6億度,可供十萬戶家庭一年使用。