鍋爐廢氣處理設備雙堿法脫硫工藝的優勢
雙堿法脫硫工藝是較適用于小型工業鍋爐的脫硫工藝,特別是除塵脫硫一體化裝置,可將除塵和脫硫同時進行,并且能提高除塵效率。對于小型工業鍋爐的脫硫除塵改造雙堿法脫硫工藝具有以下特點:
(1) 雙堿法脫硫系統可與除塵相結合,采用除塵脫硫一體化裝置,同時進行脫硫和除塵;
(2) 鈉堿吸收劑反應活性高、吸收速度快,可降低液氣比,從而既可降低運行費用,又可減少水池、水泵和管道的投資;
(3) 塔內和循環管道內的液相為鈉堿清液,吸收劑的溶解度較大,再生和沉淀分離在塔外,可大大降低塔內和管內的結垢機會;
(4) 鈉堿循環利用,損耗少,運行成本低;
(5) 正常操作下吸收過程無廢水排放;
(6) 灰水易沉淀分離,可大大降低水池的投資;
(7) 脫硫渣無毒,溶解度極小,無二次污染,可綜合利用;
(8) 石灰作為再生劑(實際消耗物),安全可靠,來源廣泛,價格低;
(9) 水泵揚程低,管路不易阻塞;
(10)操作簡便,系統可長期運行穩定。
五、 SCR脫銷工藝介紹
SCR工藝是在反應4NO+4NH3+O2=4N2+6H2O、2NO2+4NH3+O2=3N2+6H2O的體系中加入催化劑,降低NH3還原NO和NO2的溫度,減少NH3被氧氣氧化,提高轉化率。該工藝于20世紀70年代首先在日本開發成功,現已在世界范圍內成為大型工業鍋爐煙氣脫硝的主流工藝。催化劑被分布在陶瓷蜂窩材料、鋼結構平板或纖維波紋板上,構成SCR反應器,置于省煤器和空氣預熱器之間。NH3在空氣預熱器前的水平管道上加入,與煙氣混合后自上而下流經反應器。在催化劑的作用
熱水鍋爐廢氣處理設備產品廣泛運用于光伏產業、太陽能電池、電子半導體、冶金、鋼鐵、有色冶煉、醫藥化工、市政環保等國家大中型企業,以的技術、成熟的工藝與及時周到的售后服務取得了優異的成績,贏得了國內外眾多企業的*好評。
熱水鍋爐廢氣處理設備工藝流程簡介
煙氣經過先經過脫硝塔中,從塔體下部進口進入塔體,臭氧噴射泵將臭氧發生器產生的臭氧噴射塔中,臭氧流向朝下,與煙氣進行逆向接觸,進行充分融合后,臭氧分子將NO氧化為易溶于溶液的NO2。然后經脫硝塔出氣口進入到脫硫塔中,,經均流板均布后的煙氣上升,而漿液通過四個噴淋層的霧化噴嘴,向吸收塔下方成霧罩形狀噴射。形成液霧高度疊加的噴淋區。漿液液滴快速下降,均勻上升的煙氣與快速下降液形成逆向流。煙氣中所含的污染氣體由于易溶于水,絕大部分被清洗入漿液,與漿液中的堿性離子發生化學反應而被脫除。這樣通過消耗脫硫劑作為吸收反應劑。煙氣中的S02、 SO3、被分離出去,而煙氣中包含的大部分的固體如煙灰,也大部分被液霧包裹而從煙氣中分離進入漿液經過脫硫脫硝后的氣體中的氮氧化物和硫化物絕大部分已經被吸收處理,然后經過風機將氣體引入到活性炭吸附塔中進行深度處理,后經煙囪排出。
二、三種脫硫技術做一詳細比較
1、鈉鈣雙堿法:適用于中小型鍋爐,脫硫效率較高,(可達95%以上)。操作運行簡便,無堵塞,不結垢,吸收劑資源豐富,投資較少,占地較小,系統不太復雜,設備維護量較小,但運行費用略高,有大量固體廢棄物產生,基本無廢水產生。
爐內噴鈣法:工藝流程比鈉鈣雙堿法簡單,投資也較小。缺點:脫硫率較低:約60-70%、操作彈性較小、鈣硫比高,運行成本高、副產物無法利用且易發生二次污染(亞硫酸鈣分解),對爐膛磨損較為嚴重,造成鍋爐運行不太穩定。
循環流化床CFB脫硫:適用于大中型鍋爐,脫硫效率高,節省空間,無污水產生,但系統阻力損失大,設備維護量大,吸收劑要求成份嚴格,一次投資費用。
根據廠方提供資料數據和技術要求,綜合考慮占地、脫硫劑來源等各種因素,本設計方案推薦采用適用于鍋爐煙氣脫硫的工藝成熟、運行穩定、占地面積小、脫硫效率高、不易磨損、堵塞和結垢的鈉鈣雙堿法作為本項目的設計方案。脫硫系統設置一座脫硫塔、一套脫硫劑再生系統共兩套系統。
三、雙堿法脫硫機理
雙堿法是采用鈉基脫硫法脫硫機理劑進行塔內脫硫,由于鈉基脫硫劑堿性強,吸收二氧化硫后反應產物溶解度大,不會造成過飽和結晶,造成結垢堵塞問題。另一方面脫硫產物被排入再生池內用氫氧化鈣進行再生,再生出的鈉基脫硫劑再被打回脫硫塔循環使用。
雙堿法煙氣脫硫技術是利用氫氧化鈉或碳酸鈉溶液作為啟動脫硫劑,配制好的氫氧化鈉或碳酸鈉溶液直接打入脫硫塔洗滌脫除煙氣中SO2來達到煙氣脫硫的目的,然后脫硫產物經脫硫劑再生池再生成亞硫酸鈉或氫氧化鈉再打回脫硫塔內循環使用。脫硫工藝主要包括5個部分:(1)吸收劑制備與補充;(2)吸收液噴淋;(3)塔內霧滴與煙氣逆流接觸;(4)再生池吸收液再生成鈉基堿;(5)石膏脫水處理。
雙堿法脫硫的化學反應如下:
(1)吸收反應
在主塔中以鈉堿溶液吸收煙氣中的SO2:
Na2SO3+ SO2+H2O=2NaHSO3
吸收液中尚有部分的NaOH,因此吸收過程中還生成亞硫酸鈉。
2NaOH+SO2= Na2SO3 + H2O
(2)再生反應
吸收液流到反應池中與加入的石灰料漿反應:
2NaHSO3+Ca(OH)2=Na2SO3+CaSO3·1/2H2O↓+3/2H2O
Na2SO3+Ca(OH)2+1/2H2O=2NaOH+CaSO3·1/2H2O↓
再生后的漿液經鈣鹽沉淀后,Na2SO3清液送回吸收塔循環使用。
(3)副反應
吸收過程的主要副反應為氧化反應
Na2SO3+1/2O2=Na2SO4
因此在再生過程中Na2SO4發生下列反應
Na2SO4+ Ca(OH)2+2H2O=2NaOH+CaSO4·2H2O↓
但實際上,由于溶液中有相當量的SO 或OH 存在,Ca 的濃度相應很低,所以要使CaSO4沉淀,再生時的OH ≤0.14M,要有足夠高的SO 濃度,例如OH 濃度為0.1 M, SO 濃度為0.5 M,才會產生CaSO4沉淀。